Assessing the Physical Effects of Dredge Plumes on Aquatic Organisms – A Need for Science-based Solutions

Burton Suedel, Ph.D.

USACE-ERDC-EL Vicksburg, MS

GLDT Annual Meeting 22 May 2018 Toledo, OH

US Army Corps of Engineers
BUILDING STRONG®

Applying Risk Assessment Paradigm to Manage Dredging Risk

Fish Larvae and Egg Exposure System (FLEES)

FLEES Features

- Three (3) modules
- Three (3) 500 L water baths
- 15 total aquaria
- 20 L polyethylene aquaria
- Modules insulated for temperature control
- Each aquarium utilizes pump to suspend sediment
- Pump recirculates water and suspended sediment into aquaria
- Sediment mixed with water and stored in 375 L tank via double diaphragm pump
- Slurry routed through FLEES
- Sediment concentrations monitored using OBS

Case Study: Walleye EW Maumee Bay, OH

Walleye Case Study, Ohio

Problem

- EW in Maumee Bay, OH in western Lake Erie is restricting dredging operations
- Suspended sediment threshold data are lacking for walleye relevant to dredging
- Effects data are essential for conducting risk assessments and managing dredging risks

Objectives

- Develop suspended sediment effects data for walleye early life stages to reduce uncertainty about effects
- Better inform the setting of the EW

Near-field Plume Conditions Maumee Bay, OH Study Area

Distance from Dredge: 3m

Plume Width: 50 m

LWC Max. Turb. 700 NTU (15 m) < 300 NTU (30m)

UWC Max. Turb. 175 NTU (15 m) 50 NTU (30m) Ambient < 50 m

Materials and Methods

- Walleye (Sander vitreus)
- Four experiments: northern and southern strain eggs (newly spawned) and fingerlings (45-60 days)
- Sediment: Maumee Bay, Ohio (Lake Erie)
- Concentrations: 0, 100, 250, 500 mg/L TSS
- Duration: 3 days (72 h)
- Temp: 10 13°C eggs;14 17°C fingerlings
- PVC cups for containment

Walleye Endpoints

- Northern & Southern Strains
 - Fingerlings: survival, coiling, scoliosis, lordosis/kyphosis, gill integrity
 - Eggs: viability and hatchability, wet and dry mass

Northern Strain Fingerling Gill Lamellae

Fingerling gill lamellae did not differ significantly among TSS treatments

Percent Hatch of Northern Strain Eggs

No significant differences among treatments were observed for percent hatch (Anova, F=1.15, P=0.386)

Walleye: EW Study Status

- Generating effects data
- Published results
- How have these data affected the discussion on the EW for walleye?

Case Study: Oyster EW James River, VA

Eastern Oyster Case Study- VA

Problem

- Suspended sediment effects are driving EWs in the Tribell Shoal area of the James River, VA
- Suspended sediment threshold data are lacking for oysters relevant to dredging
- Effects data are essential for conducting risk assessments and managing dredging risks

Objectives

- Develop suspended sediment effects data for the eastern oyster
- Reduce uncertainty about effects to the local oyster fishery

Oysters: Experimental Parameters

- ► Crassostrea virginica
- ➤ 3-inch oysters (legal)
- ► Test conditions:
 - 7-day exposure
 - 12°C
 - 15 ppt salinity
 - James River sediment
- ► Continuous monitoring of suspended sediment and oyster feeding (5 min intervals)

Oysters: Shell Opening Data

 No statistically significant difference between treated and control for any MEs (shell opening, length, weight, condition after grow out at VIMS)

Atlantic Sturgeon EW Case Study Savannah River and Harbor, GA

Atlantic Sturgeon Case Study - GA

Problem

- Suspended sediment effects on sturgeon are restricting dredging operations (via EWs)
- Suspended sediment threshold data are lacking
- Effects based data needed to characterize and manage risk

Objective

- Develop suspended sediment effects data
- Reduce uncertainty about effects
- Support or revise the EW

Sturgeon: Endpoints

Acipenser oxyrinchus

Survival

Growth

- ➤Total length (mm)
- ➤ Standard length (mm)
- ➤ Weight (g)

Swim performance

- >Rheotaxis
- >Endurance
- >Swim speed

Sturgeon Results

Response of Atlantic sturgeon to 3-day sediment exposures. Values are means. Means for any variable were not significantly different from those of other treatments based on ANOVA (p > 0.05).

Treatment (TSS)	0	100	250	500	ANOVA PR > F
Survivorship during exposure (% of all fish tested)	100%	100%	96%	92%	n/a
Post-exposure survival time	0.89	0.78	0.76	0.71	0.3285
(mean proportion of 14 day monitoring period)					
Ucrit _{ABS} (cm/s)	21.0	23.3	31.3	29.6	0.4874
Ucrit _{REL} (BL/s)	1.24	1.62	1.84	1.74	0.5819

No significant effects observed for endpoints measured.

Smallmouth Bass (*Micropterus dolomieu*) EW Case Study

Dredging Effects on Smallmouth Bass

Problem

- Environmental windows in multiple Great Lakes harbors restricting dredging operations
- Smallmouth bass spawning along waterway shoals
- Suspended sediment threshold data lacking for smallmouth bass relevant to dredging
- Effects data essential for conducting risk assessments and managing dredging risks

Objective

 Develop suspended sediment effects data for smallmouth bass early life stages to reduce uncertainty about adverse dredging impacts

Materials and Methods

- Experiments: Texas and Illinois eggs (newly spawned) and swim-up fry
- Sediment: Fairport Harbor (Lake Erie); Grand Haven Harbor (Lake Michigan)
- Concentrations: 0, 100, 250, 500 mg/L TSS
- Duration: 3 days (72 h)
- Temp: 16.1 18.8°C
- D.O.: 7.2-7.6 mg/L
- Water volume exchange:1-2; 4-6 (grow-out)

Experimental Endpoints

Eggs→**Larvae**

Survival immediately post-hatch

Swim-up fry

- Survival, growth, and swimming performance
- Survival and growth of swim-up fry grown out after exposure

Survival and growth of smallmouth bass fry exposed to suspended sediment for 3 days

Sediment	Measured TSS (mg/L)	Survival (%)	Dry weight (mg)	Total Length (mm)	Standard length (mm)	Swim bladder length (mm)
Fairport Harbor	0 ± 4	99 ± 1	3.0 ± 0.1	11.47 ± 0.13	10.04 ± 0.06	1.53 ± 0.06
	91 ± 11	100 ± 1	3.1 ± 0.2	11.67 ± 0.07	10.03 ± 0.08	1.58 ± 0.02
	221 ± 17	100 ± 0	2.9 ± 0.7	11.16 ± 0.71	9.55 ± 0.58	1.46 ± 0.16
	452 ± 39	90 ± 17	2.2 ± 0.2*	10.97 ± 0.33	9.32 ± 0.27*	1.38 ± 0.13
Grand Haven Harbor	0 ± 3	100 ± 0	2.6 ± 0.2	11.14 ± 0.20	9.74 ± 0.08	1.37 ± 0.08
	110 ± 17	100 ± 0	2.4 ± 0.1	11.24 ± 0.12	9.67 ± 0.12	1.43 ± 0.04
	263 ± 37	100 ± 0	2.0 ± 0.2*	10.85 ± 0.06*	9.30 ± 0.06*	1.32 ± 0.08
	528 ± 40	95 ± 6	1.7 ± 0.0*	10.64 ± 0.12*	9.10 ± 0.09*	1.29 ± 0.05

Research Findings

- Exposed eggs hatched normally but newly hatched larvae are more vulnerable to the effects of suspended sediment
- Egg experiments indicated reduced survival of larvae when exposed to suspended sediments (≥ 100 mg/L TSS)
- Swim-up fry survival was not reduced (≥ 90%) even at the highest exposure concentration
- Sublethal effects were observed in growth of fish in swim-up fry experiments
- Swimming behavior of fry not affected
- Sublethal growth effects were observed in fish in grow-out fry experiments: FPH (26-d): NOEC=221 mg/L; GHH (7-d): NOEC=91 mg/L
- Worst case exposure scenario that can be conservatively extrapolated to the field for protecting the smallmouth bass fishery in Great Lakes harbors
- Publication in JGLR

Case Study: Effects of Sedimentation on Winter Flounder Eggs

Problem Statement and Objectives

Problem: Overlap of WFL spawning areas and dredging operations

Objective: Determine relationship of sedimentation to performance of WFL eggs under laboratory conditions

Key Questions:

- What depth results in unacceptable mortality?
- Is there a difference across three sediments?

BUILDING STRONG_®

Methods- Exposure Design

Results- Hatching Success

Three test sediments plotted individually

Three sediments combined

Mean +/- one standard deviation around the mean. Dotted line represents 95% confidence interval.

Cumulative Findings

- Results indicate that detailed, site-specific knowledge of the dredge project, sediment type, organism life history and exposure can better support decisions regarding the development of adequately protective EW risk management practices.
- Effects-based experimental data can be used with dredge plume exposure data to assess risk to aquatic species driving EWs
- Effects-based data can reduce uncertainty in assessing risk associated with perturbations due to dredging
- Risk-based approach using newly available data should be used to inform the setting and revision of EWs

